2016 KSSTA
No consensus exists regarding the optimal preconditioning protocol that will minimize postoperative elongation while creating a graft that is biomechanically equivalent to the native anterior cruciate ligament (ACL). It was hypothesized that a preconditioning protocol of specific mode and magnitude would create a graft with equivalent stiffness to the native ACL.
In this experimental model, increased force applied to soft tissue grafts during preconditioning significantly decreased the subsequent elongation experienced during simulated early rehabilitation. A static load of 600 N removed the most graft elongation during preconditioning, had the least amount of cyclic displacement during simulated early rehabilitation, and was statistically equivalent to the native ACL stiffness. Implementation of high-load preconditioning of soft tissue grafts may help improve outcomes following ACL reconstruction by reducing residual knee laxity resulting from postoperative graft elongation and the intrinsic viscoelastic properties of the graft tissue while imparting biomechanical characteristics (e.g. stiff- ness) equivalent to the native ACL.