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Abstract
Purpose Functional braces are commonly prescribed to

treat anterior cruciate ligament (ACL) injury. The results of

the existing literature on functional brace use are mixed.
The purpose of this study was to evaluate the history and

current state of functional ACL bracing and to identify

design criteria that could improve upon current bracing
technologies.

Methods A literature search was performed through the

PubMed MEDLINE database in April 2013 for the key-
words ‘‘anterior cruciate ligament’’ and ‘‘brace’’. Articles

published between January 1, 1980, and April 4, 2013,

were retrieved and reviewed. Current functional braces
used to treat ACL injury were identified. The function of

the native ACL was carefully studied to identify design

requirements that could improve upon current bracing
technologies.

Results Biomechanical evaluations of functional brace

effects at time zero have been mixed. Functional brace use
reportedly does not improve long-term patient outcomes

following ACL reconstruction, but has been shown to
reduce subsequent injury rates while skiing in both ACL-

deficient and reconstructed skiers. In situ force in the ACL
varies with flexion angle and activity. Currently, no brace

has been designed and validated to replicate the force-

flexion behavior of the native ACL.
Conclusions Biomechanical and clinical evidence sug-

gests current functional bracing technologies do not suffi-

ciently restore normal biomechanics to the ACL-deficient
knee, protect the reconstructed ACL, and improve long-

term patient outcomes. Further research into a functional

brace designed to apply forces to the knee joint similar in
magnitude to the native ACL should be pursued.

Level of evidence III.

Keywords Anterior cruciate ligament ! Functional brace !
Deficiency ! Reconstruction

Introduction

In the USA, there are approximately 200,000 anterior

cruciate ligament (ACL) injuries per year [26]. Over half of
these injuries undergo ACL reconstruction, which results in

close to 100,000 ACL reconstructions annually or 32 per
100,000 citizens [26, 51, 59]. Similar annual incidence of

ACL reconstructions has been reported in Denmark, Nor-

way, Sweden, and Germany, with even higher incidence
rates of 70–91 per 100,000 for at-risk age groups less than

40 years of age [30, 31, 47, 49]. ACL tears result in altered

tibiofemoral kinematics and joint contact mechanics [5].
Meniscal tears and osteoarthritis are commonly associated

with ACL injuries [16, 42]. Additionally, residual insta-

bility, neuromuscular deficits, and altered lower extremity
biomechanics following ACL injury and reconstruction can

result in overcompensation and altered biomechanics in the

contralateral leg and an increased risk of secondary injury
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in both the injured and contralateral knees [27, 34, 60, 79].

Anatomic reconstructions have attempted to restore sta-
bility to the intact state with improved tunnel placement

[62, 90]; however, elongation of the ACL graft during the

healing process remains unrestrained [14]. Additionally,
graft failure rates following anatomic reconstruction have

been reported to be as high as 13 % [80]. In situ forces in

anatomically placed ACL grafts have been reported in vitro
to be similar to the native ACL and higher than in non-

anatomical reconstructions, which may explain the
increased rates of graft failure following anatomic recon-

struction [61, 66, 80]. Graft material also reportedly

influences the occurrence of graft failures, with higher
revision rates reported for allografts versus autografts and

hamstring grafts versus bone-patellar tendon bone (BPTB)

grafts [4, 48]; a slower ligamentization process reportedly
is observed with allografts [36, 57, 83]. The treatment for

ACL injuries often involves the use of a functional brace to

help achieve an optimal result and avoid the described
complications. Functional brace use has been reported for:

• Postoperative stabilization to theoretically allow nor-
mal tibiofemoral kinematics while preventing excessive

strain and elongation of the healing ACL graft [13, 15,

54, 63, 82].
• Non-operative treatment for chronic ACL deficiency to

prevent subsequent injury and reduce functional deficits

[25, 41].
• ACL injuries in skeletally immature individuals to

prevent subsequent injury until maturity is reached and

reconstruction can be performed without damaging the
epiphyseal growth plates [56].

• Pre-operative stabilization of the knee joint to prevent

subsequent meniscal and chondral injuries until surgery
can be performed [50].

According to a survey of the American Orthopaedic

Society for Sports Medicine (AOSSM), only 13 % of
surgeons never prescribe functional brace use to their ACL

reconstruction patients and only 3 % never brace their

ACL-deficient patients [23]. A separate survey of the
AOSSM reported 63 % of surgeons prescribe functional

brace use for their ACL reconstruction patients, 71 % of
which prescribe brace use for up to 1 year [25]. As a result,

numerous functional braces have been developed to treat

ACL deficiency and to improve patient outcomes following
ACL reconstructions (Table 1; Fig. 1). This underlines the

fact that there is large demand for functional braces. Based

on the reported numbers of annual ACL injuries in the
USA and Scandinavia and brace prescription rates reported

by members of the AOSSM, it is reasonable to assume that

more than 100,000 functional braces are prescribed each
year in the USA and an additional 10,000 in Scandinavian

countries to treat ACL injuries [23, 25, 26, 30, 31, 47, 59].

With an average cost of $592 USD, functional bracing of

ACL injuries is placing a significant financial burden on the
healthcare system; estimated at over $65,000,000 USD per

year in the USA and Scandinavia.

While functional bracing of patients with ACL injury is
common, most biomechanical and clinical studies do not

support the use of current bracing technologies due to

reported lack of control of anterior tibial translation (ATT),
strain shielding of the ACL graft, and improvements in

long-term patient outcomes [15, 19, 54, 63]. Given the high
cost of braces and the limited evidence supporting use, a

major scientific question is to understand the role of

functional braces in the treatment for ACL injuries; spe-
cifically, what impact are braces having clinically on

patient outcomes, what are the biomechanical limitations

of current braces, and how can functional braces be
improved? Therefore, the purpose of this systematic review

was to critically evaluate the history and current state of

ACL functional bracing based on clinical and biomechan-
ical evidence and to identify design criteria founded on the

function of the native ACL that could advance current

technologies and improve patient outcomes.

Materials and methods

This article focused on the following topics: history of

functional bracing for ACL injury, biomechanical charac-
teristics of the native ACL, biomechanical evaluation of

functional bracing for ACL injury, and clinical evaluation

of functional bracing for ACL injury. A literature search
was performed through the PubMed MEDLINE database

(PubMed) in April 2013 for combinations of the keywords

‘‘anterior cruciate ligament’’ and ‘‘brace’’. Articles pub-
lished between January 1, 1980, and April 4, 2013, were

retrieved, and the titles, abstracts, and text were reviewed

for relevance to the topics of this study. The keyword lit-
erature search for ‘‘anterior cruciate ligament brace’’

returned 261 results. Relevant articles were retained and

more critically reviewed for information pertinent to this
article. Reference sections of the initially gathered litera-

ture were reviewed for additional relevant studies. The

clinical evidence reviewed in this study consisted of three
level 1 randomized controlled trials and two level 3 pro-

spective cohort studies. Non-English language articles and

studies focusing on rehabilitation and range of motion
braces were excluded. Biomechanical and clinical studies

reporting on existing ACL functional braces were thor-

oughly reviewed to identify areas where current bracing
technologies could be improved. The reported biome-

chanical properties and function of the native ACL were

used to determine evidence-based design requirements for
future functional brace development.
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Results

History of functional bracing for ACL injury

Documented use of knee braces to treat ligament injury and

instability goes back to as early as the 1960s, most notably

the use of the Lenox Hill brace by American football

quarterback Joe Namath following multiple knee surgeries,
which was developed by Castiglia and Nicholas [58]. Since

that time, multiple brace manufacturers and brace models

have been introduced into the market (Table 1; Fig. 1). To
date, functional braces from at least nine different manu-

facturers have been reported on in the literature [10, 13, 15,

19, 76, 82]. Surveys of the AOSSM, which gathered data in

Table 1 Comparison of commercially available functional braces commonly prescribed to treat ACL injury as of April 2013

Manufacturer Model Cost
($)a

Material Design highlights Recommended
usage

Custom/
OTS

Albrecht Jack ACL 1,300.00 Aluminum Constant posterior-directed translation force, 15
adjustable levels of spring tension

Activities of daily
living

OTS

Bledsoe AXIOM-D 569.99 Steel-
reinforced
aluminum

Dynamic tibial mechanism, migration
preventing strap system

High impact
activities

Both

Lightweight
magnesium
material

Dynamic tibial mechanism, migration
preventing strap system

Activities of daily
living and athletic
activities

Both

Z-12 D 529.99 Lightweight
magnesium
material

Dynamic tibial mechanism, lightweight/low
profile, migration preventing strap system

Activities of daily
living and athletic
activities

Both

Breg Fusion 499.99 Aluminum AirTechTM frame pads, pivot point strap tabs,
ProForm medial structure technology

Activities of daily
living and athletic
activities

Both

LPR 489.99 Aluminum AirTechTM frame pads, truss-shaped frame for
high strength-to-weight ratio

Activities of daily
living and athletic
activities

Both

X2K 479.99 Aluminum Diamond design for varus–valgus stiffness Activities of daily
living and athletic
activities

Both

DonJoy Defiance 899.99 Carbon
composite

4-points-of-leverage systemTM, FourcePointTM

hinge technology
Activities of daily
living to high
impact activities

Custom

Armor 549.99 Aluminum 4-points-of-leverage systemTM, FourcePointTM

hinge technology, steel-reinforced hinge plate
High impact
activities and
extreme sports

OTS

FULLFORCETM 524.99 Aluminum 4-points-of-leverage systemTM, FourcePointTM

hinge technology
Athletic activities OTS

Össur CTi" 399.99 Carbon
composite

Total support systemTM, accutrac" hinges,
Sensil" padding

Medium to high
impact activities

Both

Paradigm" 402.99 Carbon
composite

Flexible subshell, polycentric hinges Low to medium
impact activities

Both

MVP" contour 402.99 Aluminum Flexible subshell, accutrac" hinges, sensil"

padding
Activities of daily
living and athletic
activities

OTS

Townsend Premier 624.00 Carbon
graphite

Townsend motion TM5 ? hinges, synergistic
suspension strap, anti-migration padding

Activities of daily
living and athletic
activities

Custom

Air 650.00 Carbon
graphite

Townsend motion TM5 ? hinges, synergistic
suspension strap, anti-migration padding,
anti-rotation tibia shell bolster

High impact
activities and
extreme sports

Custom

Rebel 549.99 Aluminum Townsend motion TM5 ? hinges, synergistic
suspension strap, anti-migration padding

Activities of daily
living and athletic
activities

Both

OTS Off-the-shelf
a For braces with custom and OTS options, pricing for the OTS brace is listed. Prices reported as USD
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1993 and 1999, indicate that surgeons are starting to pre-

scribe functional brace use less frequently [23, 24]. This

decline corresponds to non-favorable reports on bracing in
the literature [15, 54, 63]. Biomechanical studies suggest

that existing functional ACL bracing technologies are

effective at limiting ATT and strain shielding the ACL
graft in response to anterior-directed tibial forces up to

140 N and rotational torques up to 8 Nm [5, 10, 28, 82].

However, the bracing effects diminished in response to
higher loads and during athletic activities [5, 13, 19].

Multiple clinical studies have reported that long-term

patient outcomes following ACL reconstruction are not
measurably improved through the use of a functional brace

[15, 54, 63]; however, decreased subsequent injury rates in

professional skiers while skiing have been reported [41,
76]. Other reported benefits include improved athletic

performance in ACL-deficient athletes, a feeling of

heightened stability and confidence in the injured knee
while wearing the brace during functional activities, and

improved proprioception [15, 18, 19, 54, 85]. The lack of

scientific evidence supporting functional bracing has led
authors to recommend that surgeons not prescribe func-

tional brace use following ACL reconstruction [15, 54].

While a slight decline in functional brace prescription was
reported as of 1999, the use of functional braces to treat

ACL injury remains common practice.

Biomechanical characteristics of the native ACL

The purpose of functional ACL bracing is to provide kine-

matic constraint to the ACL-deficient or reconstructed knee

in the absence of an intact ACL, primarily the anterior–
posterior (A-P) constraint that the native ACL provides to

control ATT, with secondary constraints of internal–external

rotation and varus–valgus angulation [1]. The lack of bio-
mechanical and clinical evidence in the literature supporting

functional brace use brings into question the design criteria

of current brace technologies. No brace has been success-
fully validated in the literature to appropriately constrain the

knee joint and improve patient outcomes. The function of the

native ACL should be the foundation of ACL brace design.
Therefore, the in situ forces in the nativeACLas a function of

flexion angle and activity must be defined. The biomechan-

ical characteristics of this ligament have been thoroughly
reported on [32]; strain, elongation, orientation, and in situ

force behavior of the ACL have been investigated in vivo,

in vitro, and with mathematical models of in vivo activities
[7, 10, 12, 13, 17, 29, 33, 35, 37–39, 43–46, 52, 64, 67, 69,

71–74, 78, 86, 87].

Several studies from the University of Vermont have
reported on the in vivo strain and elongation behavior of

the native ACL and ACL graft by implanting a Hall-effect

strain transducer or differential variable reluctance

Fig. 1 Photograph of three available functional braces used to treat ACL injury on a right knee, presented in alphabetical order: a DonJoy
FULLFORCE, b Jack ACL Brace, c Össur CTi Brace
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transducer onto the anteromedial (AM) substance of the

ligament or graft [7, 10–14]. Strain in the instrumented
ACL was recorded in response to both manually applied

external loads (internal–external tibial torque, anterior

tibial force) during weight-bearing and non-weight-bearing
conditions and while patients performed various rehabili-

tation exercises (flexion–extension, squatting, isometric

quadriceps contraction, isometric hamstring contraction,
co-contraction of the quadriceps and hamstring). Maximum

strain was reported to occur at full extension, with
decreasing strain as the knee was flexed to 90# [7, 12].

Quadriceps-dominated activities reportedly strained the

ACL, while hamstring contraction produced low, if any,
strain [5].

The in vivo elongation behavior of the ACL has also

been reported with less invasive techniques. Three-
dimensional bone models reconstructed from computed

tomography scans combined with biplane fluoroscopy bone

tracking have been used to visualize tibiofemoral position
during walking and weight-bearing flexion [37, 43, 44, 86].

These studies estimated the elongation and orientation of

the ACL based on the relative positions of the ACL foot-
prints on the tibia and femur. Maximum elongations of the

ACL and its individual bundles during a single leg lunge

were reported to occur between full extension and 30# of
flexion and decreased with increasing flexion [37, 43]. One

study reported that AM bundle length did not change sig-

nificantly as a function of flexion angle while elongation
behavior of the posterolateral (PL) bundle was similar to

other studies [44]. During the stance phase of gait, both

bundles were maximally elongated at heal strike and late
mid-stance and were shortest at toe-off [86].

Several in vitro biomechanical studies have quantified the

in situ forces in the ACL in response to external joint loading
(anterior tibial force, internal–external tibial torque, varus–

valgus torque, simulated pivot shift, simulated muscle

loading) using the principle of superposition [29, 35, 38, 45,
46, 52, 64, 87]. Maximum in situ ACL forces were reported

to occur between full extension and 30# of flexion, with

decreasing force as flexion angle increased. Forces in theAM
bundle were reported to be relatively constant, while forces

in the PL bundle decreased significantly with increasing

flexion [29, 64, 87]. Forces reportedly began to increase
again slightly at 150# of flexion [46]. Both co-contraction of
the quadriceps and hamstrings and isolated hamstring con-

traction were shown to decrease force in the ACL compared
to isolated quadriceps contraction [45, 46].

In vitro studies are unable to replicate the complexity

and magnitude of the loads experienced by the knee joint
in vivo. Several studies have developed mathematical

models to predict in situ forces during functional activities

(walking, chair rise, flexion–extension, squatting, single leg
lunge, drop landing) [17, 33, 39, 67, 69, 71–74, 78].

Similar to in vitro investigations, maximum in situ force in

the ACL was reported to occur near full extension and
decreased with increasing flexion angle. However, pre-

dicted in situ forces in the ACL in vivo [33, 35, 39, 67, 69,

71–74, 78] were reported to be up to eight times higher
than forces measured in vitro [29, 38, 45, 46, 52, 64, 87].

The reviewed ACL elongation and force data were used

in the present study to characterize the in vivo force-flexion
behavior of the native ACL during functional activities

(walking, squatting, single leg lunge, isometric and isoki-
netic extension). The A-P component of the ACL force was

isolated to quantify the forces which constrain ATT

(Fig. 2). This was accomplished using trigonometric cal-
culations and previously described orientation angles of the

ACL relative to the tibial plateau [37, 43, 64, 86]. The

authors theorize that application of these forces to the knee
joint with a functional brace would prevent abnormal

translation in ACL-deficient knees and unload the healing

ACL graft following reconstruction.

Biomechanical evaluation of functional bracing

for ACL injury

Common activities of daily living and rehabilitation exer-

cises are known to induce ATT and strain the ACL [6, 7, 12,
74, 78]. Numerous studies have biomechanically evaluated

the ability of functional braces to limit ATT and reduce strain

on the ACL or ACL graft [6, 10, 13, 19, 28, 75, 82, 88].
Motion capture and force plate systems have been used to

measure the effects of bracing on in vivo knee kinematics and

kinetics during functional activities and dynamic cutting and
pivoting [19, 75, 82, 88]. Instrumentedmeasurement of ATT

and ACL strain in vivo in response to external loads has also

been reported [6, 10, 13, 18, 28].

Fig. 2 Graph of the average anterior–posterior in situ force of the
ACL in vivo experienced during walking, squatting, single leg lunge,
isometric extension, and isokinetic extension
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The strain shielding effect of functional bracing has been

studied extensively in vivo at the University of Vermont in
response to anterior shear loading, internal–external tibial

torque, isometric quadriceps contraction, active flexion–

extension, and weight-bearing versus non-weight-bearing
conditions [10, 13, 28]. Bracing was reported to reduce ACL

strain in response to a maximum of both weight-bearing and

non-weight-bearing 140 N anterior tibial force and non-
weight-bearing 8 Nm internal tibial torques [10, 28]. The

strain shielding effect was not significant in response to
higher forces, weight-bearing tibial torques, isometric

quadriceps contraction, or active flexion–extension.

Similarly, the effect of functional bracing on ATT in
ACL-deficient knees has been investigated [6, 18, 82].

Beynnon et al. [6] reported that bracing reduced translation

to normal levels in response to a 130 N anterior tibial force
during both weight-bearing and non-weight-bearing condi-

tions; however, bracing could not reduce the translation that

occurred during the transition from non-weight-bearing to
weight-bearing. Contraction of lower extremity muscles

combined with functional bracing reportedly reduced

translation by 80.1 % in response to a 133 N anterior tibial
force, compared to 33.1 % for bracing with muscles relaxed

[82]. A similar study reported that bracing decreased ATT in

response to a 100 N anterior tibial force, but was unable to
limit translation in response to isolated maximal quadriceps

contraction [18]. However, these studies lacked the dynamic

loading conditions experienced during running, cutting, and
pivoting activities.

Cook et al. [19] reported the effect of functional bracing

during running and cutting in ACL-deficient subjects.
Bracing improved running and cutting performance, but did

not prevent abnormal ATT. Subjects reported fewer inci-

dents of subluxation while wearing the brace during testing.
Two studies investigated the kinematic and kinetic effects of

a functional knee brace with resistance to extension beyond

40# of flexion. Flexion angles and ground reaction forces
were analyzed during a vertical stop-jump activity in healthy

subjects and during walking, jogging, and stair descent in

patients 3.5–6.5 months after ACL reconstruction [75, 88].
Flexion angles were significantly increased while wearing

the brace during landing and at initial foot contact during

walking, jogging, and stair descent. Ground reaction forces
were only reduced during walking. The authors theorized

that despite limited changes in ground reaction forces, loads

on the ACL would still be reduced due to the increase in
flexion angle.

Clinical evaluation of functional bracing for ACL
injury

A combination of objective, subjective, and functional
evaluations are utilized to evaluate ACL injury and

reconstruction. Clinical examinations, such as the Lach-

man’s test and pivot shift examination, are used by phy-
sicians to detect ACL injuries by observing differences in

anterior and rotational stability compared to the healthy

contralateral knee. Restoration of normal side-to-side dif-
ferences in ATT following ACL reconstruction has often

been considered a quantifiable objective measure for suc-

cessful reconstruction. Studies have used instrumented
measurement of ATT with a KT-1000 arthrometer to define

clinically significant differences in translation between the
injured and contralateral normal knee, with less than

1.5 mm reported as normal, 2.0–2.5 mm considered

equivocal, and greater than 3.0 mm of increased ATT
indicative of an ACL tear [21, 22]. Insufficient rotational

stability has been strongly correlated with functional defi-

cits [89], and a positive pivot shift, which takes into
account both translational and rotational stability, has been

strongly correlated with poorer subjective scores and

functional deficits [40]. Scores calculated from patient
surveys, such as the Lysholm, Tegner, IKDC, Cincinnati,

and quality of life, are used to subjectively evaluate patient

outcomes. Surveys on return to sports, stability during
cutting and pivoting, functional performance tests, and

giving-way episodes identify functional deficits. While

many in vitro studies have reported that various ACL
reconstruction techniques have been able to restore anterior

and rotational stability to levels not significantly different

from the intact state [55, 61, 66, 84], these small and sta-
tistically insignificant differences appear to still have

clinical implications. This underlines the fact that in vitro

biomechanical reports of knee stability are not always
predictive of long-term in vivo results. Several clinical

studies have evaluated the long-term effects of functional

bracing following ACL reconstruction using objective,
subjective, and functional patient outcome measures [15,

18, 54, 63, 76].

A randomized controlled trial in 2008 compared the
effects of functional knee brace and neoprene sleeve use

after ACL reconstruction with four-strand hamstring ten-

don grafts [15]. One hundred and fifty patients were ran-
domized to 1 of the 2 groups 6 weeks postoperatively and

evaluated at 6, 12, and 24 months postoperatively. The

metrics included an ACL quality of life questionnaire, side-
to-side differences in ATT, single limb forward hop test,

and Tegner activity level. Patients were prescribed either a

functional ACL knee brace (DonJoy Legend, DJO Global
Inc., Vista, CA) or an open patella neoprene sleeve (Neo-

prene Knee Sleeve, DJO Global Inc., Vista, CA). No sig-

nificant differences were observed for any of the outcome
measures between the brace and sleeve groups after 1 and

2 years. Self-reported patient compliance for wearing the

brace was 63 % at 6- and 12-month follow-up, compared to
65 % for the sleeve group. Improved confidence in the
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knee and assistance returning to sports activities was rated

higher for the brace group than the sleeve group at
12-month follow-up. The authors concluded that use of the

functional knee brace did not improve any of the ACL-

specific outcome measures when compared to neoprene
sleeve use.

One hundred volunteers from 3 of the US service

academies were randomized between braced and non-
braced groups following ACL reconstruction with BPTB

grafts and evaluated on prone heel height differences, side-
to-side differences in ATT, Lachman’s test scores, pivot

shift examination scores, Lysholm scores, single leg hop

test, IKDC scores, range of motion, and isokinetic strength
after a minimum of 2 years postoperatively [54]. Braced

patients were prescribed an off-the-shelf functional knee

brace to be worn daily for 6 months and for all rigorous
activities for at least 1 year. At 2-year follow-up, no sig-

nificant differences were observed between the braced and

non-braced groups. Seventy-nine percent of patients
reported being compliant with prescribed brace use.

Patients reported confidence in the knee while wearing the

brace but complained about fit, slippage, and negative
effects on athletic performance. The authors concluded that

functional knee bracing after ACL reconstruction did not

influence patient outcomes in a young, active population.
In a 1999 study by Risberg et al. [63], the effect of knee

bracing after ACL reconstruction with BPTB grafts was

evaluated at 6 weeks, three and 6 months, and one and
2 years follow-up. Sixty patients were randomized into one

of two groups. Braced patients wore a rehabilitation brace

(Range of Motion Brace, DJO Global Inc., Vista, CA) for
2 weeks and then a functional knee brace (DonJoy Gold

Point, DJO Global Inc., Vista, CA) for the next 10 weeks.

The brace was then worn as needed for physical activity.
Outcome measures included side-to-side differences in

ATT, Cincinnati knee scores, range of motion, Tegner

activity level, muscle atrophy, muscle strength, and func-
tional knee testing. The Cincinnati knee score for the

braced group was significantly improved compared to the

non-braced group at 3 months. However, no significant
differences were observed at any other follow-up times.

Significantly increased muscle atrophy was observed for

the braced group after 3 months, but did not differ signif-
icantly after 6 months. No other differences were reported.

Seventy-six percent of patients reportedly complied with

the recommended brace use for the first 3 months and
62 % of patients continued to use the brace for sports

activities beyond 3 months. Braced patients reported

improved function and decreased giving-way episodes
during sports activities. Lack of compliance was associated

with discomfort caused by the brace. The authors con-

cluded that, with the exception of improved Cincinnati
knee scores and increased muscle atrophy after 3 months,

this functional knee brace had no effect on patient out-

comes following ACL reconstruction.
Functional brace use has been reported to decrease the rate

of subsequent injury to both the ACL reconstructed and

ACL-deficient knee in skier populations [41, 76]. A study in
2006 [76] evaluated the effect of functional brace use on rates

of subsequent knee injury during skiing in a population of

professional skiers who had undergone ACL reconstruction
with BPTB or hamstring grafts at least 2 years prior to the

current ski season. Eight hundred and twenty subjects were
included in the study who had undergone ACL reconstruc-

tion, two hundred and fifty-seven of whomwore a functional

brace (CTi2, Innovation Sports, Irvine, CA) while skiing.
Sixty-one subsequent injuries were reported. The injury rate

for braced skiers (4 %) was significantly lower than non-

braced skiers (9 %). The rate of injury requiring surgery was
significantly higher for the non-braced group (4 %) com-

pared to the braced group (1 %). Eleven injuries, all in the

non-braced group, required ACL reconstruction. Patient
compliance with recommended brace use was not evaluated.

The authors concluded that skiers with a reconstructed ACL

without a functional brace were almost three times more
likely to experience a subsequent knee injury than braced

skiers.

A similar study in 2003 [41] reported on the effect of
functional brace use on the rate of subsequent knee injury

in ACL-deficient skiers. One hundred and eighty ACL-

deficient professional skiers were included in this study,
and one hundred and one skiers were prescribed a func-

tional brace (CTi2, Innovation Sorts, Irvine, CA) based on

shared doctor–patient decision making. The injury rate for
non-braced skiers (13 %) was significantly higher than for

braced skiers (2 %). Patient compliance was not moni-

tored. Non-braced ACL-deficient skiers were reportedly
over six times more likely to sustain a subsequent knee

injury than ACL-deficient skiers who wore the brace.

Discussion

The major findings in the current review are:

• Functional bracing of ACL injuries is commonly
practiced and imposes a significant financial burden

on the healthcare system.

• Biomechanical literature demonstrates that functional
bracing does not strain shield the ACL or reduce ATT

in response to anterior forces and internal torques

greater than 140 N and 8 Nm, or during functional
activities.

• Clinical literature demonstrates that use of a functional

brace postoperatively following ACL reconstruction
does not affect long-term patient outcomes.
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• Clinical evidence suggests functional bracing of ACL

reconstructed and ACL-deficient knees prevents sub-

sequent knee injury during skiing.
• Patient compliance with prescribed functional brace use

has been limited by brace discomfort, slippage, fit, and

inhibition of athletic performance.
• This review supports the need for improved functional

brace design to account for the dynamic, flexion angle–

dependent forces that the ACL has been reported to
experience in vivo.

The purpose of a functional ACL brace is to provide the

ACL-deficient or reconstructed knee with normal stability
in the absence of a healthy ACL; specifically to prevent

abnormal ATT and excessive strain and elongation of the

ACL graft. Our review of the ACL biomechanical literature
demonstrates that the ACL is a dynamically loaded liga-

ment that experiences varying levels of force as a function

of flexion angle and activity. These findings may explain
why current bracing technologies, which do no replicate

the loading characteristics of the native ACL, have been

reported in the literature to be unsuccessful.
The results of the biomechanical literature on functional

bracing are mixed, with reported reductions in ATT and

strain on the ACL but diminished effects beyond anterior
forces and internal torques of 140 N and 8 Nm. Addi-

tionally, bracing reportedly improved running and cutting
performance, decreased subluxation and giving-way epi-

sodes, and increased knee flexion angles during dynamic

activities, but was unable to reduce ATT and ground
reaction forces. The reviewed biomechanical evidence

suggests that the stabilizing effects at time zero of current

bracing technologies are insufficient. Additionally, the use
of a functional brace following ACL reconstruction is not

supported by reported long-term patient outcomes. A

positive prophylactic effect was reported in professional
skiers with ACL-deficient and reconstructed knees, and

patients commonly reported feeling more stable and con-

fident in the injured knee while wearing the brace during
functional activities. However, significant improvements in

clinical outcomes following ACL reconstruction were not

reported. Based on the reviewed scientific evidence, the
authors recommend that current functional bracing tech-

nologies not be used postoperatively following ACL

reconstruction. The reported effects of functional bracing
during athletic activities were more positive. Therefore,

functional bracing should be used by ACL-deficient or

reconstructed patients during sports activities, especially
during skiing and other cutting activities.

Although current bracing technologies have been

reported to be largely ineffective, the need to provide
normal stability to the ACL injured knee is still appar-

ent. Graft failure and elongation, residual instability,

functional deficits, secondary ACL injury to both the

injured and contralateral knee, and inability to return to
sports and prior level of play remain common [2–4, 20,

27, 34, 52, 53, 60, 65, 68, 80]. Anatomic reconstruction

techniques have optimized placement of the graft tunnels
to more closely replicate the native anatomy of the ACL;

however, anatomic tunnel placement reportedly increases

the force placed on the graft compared to non-anatomic
reconstructions [61, 66] and may increase the risk of

failure [80]. Additionally, rehabilitation protocols are
placing higher demands on the graft as patients are

returning to range of motion, weight-bearing, strength

building, and sport-specific exercises faster than ever
before [9, 70, 81]. Patients with ACL injury who opt to

not undergo surgical intervention or postpone the surgi-

cal treatment, as has been recommended in children, are
faced with functionally disabling instabilities, increased

risk of subsequent injury to the joint, and increased risk

of early onset osteoarthritis [6, 8, 9, 18, 42, 77].
No existing functional ACL brace has been success-

fully validated in the literature to restore normal anterior

stability to the ACL-deficient knee and improve long-
term patient outcomes following reconstruction. The

ideal functional brace to treat ACL injuries should rep-

licate the constraint of the native ACL on the knee joint.
Specifically, the brace should apply a posterior-directed

force to the anterior proximal tibia that varies with

flexion angle, as described in the present manuscript.
Additionally, the magnitude of the force should be

adjustable to account for the activity being performed.

Other brace design requirements should address increas-
ing patient compliance with improved comfort, fit, and

decreased slippage, as well as considering decreased

inhibition of sports performance.

Conclusions

The reviewed biomechanical and clinical evidence on

functional bracing of ACL injuries does not support the use
of current bracing technologies. To appropriately control

ATT and prevent elongation of the ACL graft during

functional activities, a brace designed to reproduce the
forces of the native ACL on the knee joint should be

pursued.
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