The medial and lateral menisci have an important role in load-bearing and shock absorption and contribute to knee stability, with meniscectomy resulting in increased anterior translation of the femoral condyle on the tibia.

Meniscal repair provides improved long-term outcomes, better clinical outcome scores, and less severe degenerative changes seen radiographically compared with partial meniscectomy.

Given the potential long-term sequelae of meniscal pathology, patients with symptomatic meniscal tears warrant a thorough assessment with surgical consultation to determine the optimal treatment strategy.

Advancements in surgical techniques and biologic augmentation have expanded the indications for meniscal repair to include tear patterns previously considered irreparable.

The menisci were once considered a functionless remnant of muscle that should be removed in its entirety at any sign of abnormality. Its role in load distribution, knee stability, and arthritis prevention has since been well established. The medial and lateral menisci are now considered vital structures in the healthy knee. Advancements in surgical techniques and biologic augmentation methods have expanded the indications for meniscal repair, with documented healing in tears previously deemed unsalvageable. In this article, we review the anatomy and function of the meniscus, evaluate the implications of meniscectomy, and assess the techniques of, and outcomes following, meniscal repair.

Anatomy and Biomechanics of the Meniscus

The medial and lateral menisci are unique cartilaginous structures located between the femoral condyle and the tibial plateau that contribute to knee stability and load distribution (Fig. 1). The medial meniscus is a C-shaped structure measuring approximately 45.7 mm in length and 27.4 mm in width. The lateral meniscus is U-shaped, with dimensions of 35.7 mm in length and 29.3 mm in width, and demonstrates greater variability in its shape, size, and mobility. The menisci are stabilized by their anterior and posterior roots, the anterior intermeniscal (transverse) ligament, the medial collateral ligament, the meniscofemoral ligaments, and the coronary ligaments.

The blood supply to the meniscus is provided through the perimeniscal capillary plexus originating in the capsular and synovial tissues (Fig. 2). The vascularized peripheral rim of the meniscus is defined as the vascular zone, while the more central zone, devoid of microvasculature, is defined as the avascular zone. The collagen-fiber configuration of the meniscus is ideal for transferring compressive loads into circumferential “hoop” stresses (Fig. 3).

The menisci have an important role in load-bearing and shock absorption. Meniscectomy decreases the contact area by 75%, increases the peak local contact stresses by 235%, and allows for increased anterior translation of the femoral condyle on the tibia. This combination of increased shear forces and compressive loads is thought to result in arthritic changes.

Disclosure: No external funding was received for this work. On the Disclosure of Potential Conflicts of Interest forms, which are provided with the online version of the article, one or more of the authors checked “yes” to indicate that the author had a relevant financial relationship in the biomedical arena outside the submitted work (http://links.lww.com/JBJS/E270).
Biochemistry and Biomarkers

The meniscus is a relatively acellular structure with predominantly fibroblast-like cells in the vascular zone and chondrocyte-like cells in the avascular zone. The biomarker composition within the synovial fluid differs substantially in normal knees compared with those with traumatic or degenerative meniscal tears. Furthermore, these conditions persist months after injury, suggesting a chronic inflammatory state resulting in meniscal degeneration and the initiation of osteoarthritis.

Degradative enzymes, including metalloproteinases and aggrecanases, contribute to meniscal degeneration through proteoglycan and collagen degradation. Biologic augmentation strategies are designed to promote a healing environment around the relatively acellular meniscus and disrupt the degradative cascade.

Repair Indications

While biomechanical data suggest that repair should always be performed, laboratory testing does not consider the implications of persistent pain, decreased functional scores, poor healing response, and the increased reoperation rate that can result from a failed meniscal repair. As a result, factors associated with successful meniscal healing continue to drive the surgical decision-making process and indications for repair. Furthermore, it should be recognized that healing is also not well defined. The resolution of clinical symptoms (clinically healed), magnetic resonance imaging (MRI) evidence of continuity (healed on imaging), and second-look arthroscopy (visually healed) do not always correlate. A thorough understanding of the many factors affecting a patient’s expected clinical outcome is necessary to determine the optimal treatment for each individual patient.

Vascular Versus Avascular

The meniscus has limited healing capacity, most notably in its central two-thirds, which is avascular and aneural. In contrast, the outer third of the meniscus contains the perimeniscal capillary plexus, thought to promote healing. This has been validated by an animal model in which peripheral-third meniscal tears healed in approximately 10 weeks, similar to other soft-tissue injuries. Clinically, multiple studies

Fig. 1
A cadaveric image of the tibial plateau, menisci, and cruciate ligaments. ACL = anterior cruciate ligament, and PCL = posterior cruciate ligament. (By permission of Mayo Foundation for Medical Education and Research. © Mayo 2017. All rights reserved.)

Fig. 2
Microvasculature of the medial meniscus, following vascular perfusion with India ink and tissue clearing using a modified Spalteholz technique. The perimeniscal capillary plexus (PCP) can be seen penetrating the peripheral border of the medial meniscus. F = femur, and T = tibia. (Reproduced from: Arnoczky SP, Warren RF. Microvasculature of the human meniscus. Am J Sports Med. 1982 Mar-Apr;10(2):90-5. SAGE Publications.)
have demonstrated excellent healing of peripheral tears, and the distance of the tear from the meniscocapsular junction (0 to 2 mm) has been identified as the greatest predictor for healing. However, repair of tears in the avascular zone can also have clinical benefit. Noyes and Barber-Westin reported that 75% of patients <20 years of age and 87% of those ≥40 years of age were asymptomatic with respect to tibiofemoral joint symptoms after avascular zone repairs at a mean postoperative follow-up of 51 months and 34 months, respectively.

Pattern and Location

Vertical longitudinal tears are more likely to heal than are other tear patterns. Radial, oblique, and horizontal cleavage tears, by definition, involve the avascular zone of the meniscus. Tear length also affects the meniscal healing rate.

If the tear extends from the anterior horn to the posterior horn, allowing the meniscal fragment to flip on itself (a bucket-handle tear), the rate of healing is reduced. Anterior and posterior horn root avulsion injuries are beyond the scope of this article and have been previously described by LaPrade et al.

Isolated Versus Combined Ligament Reconstruction

Cannon and Vittori compared the healing rate of menisci repaired in conjunction with an anterior cruciate ligament (ACL) reconstruction (68 patients, group 1) with that of menisci undergoing isolated meniscal repair (22 patients, group 2). The overall healing rate was 82%. However, healing was demonstrated in 91% of the patients in group 1 compared with 50% in group 2. This finding has been verified by other authors and is thought to result from the release of growth factors and pluripotent cells after bone-tunnel drilling that results in biologic augmentation at the repair site. An alternative theory is that the meniscus is otherwise normal but tears as a result of the tibiofemoral subluxation in these traumatic cases, whereas menisci that tear in isolation are inherently susceptible.

Traumatic Versus Degenerative Tears

Traumatic tears occur as a result of supraphysiologic forces applied to the knee, often resulting in concomitant ligamentous disruption. In contrast, degenerative tears result from repetitive physiologic forces leading to gradual wear of the meniscus. Degenerative tears are commonly horizontal cleavage or complex tears accompanied by osteoarthritic changes of the tibiofemoral joint (chondral changes of Outerbridge II or greater), as was noted in >85% of 44 knees in a previous study, compared with only 12% of knees with radial tears and 0% with vertical longitudinal tears. Nonoperative therapy focusing on nonsteroidal anti-inflammatory drugs and physical therapy has been shown to provide pain relief and improve mechanical function of the knee joint for degenerative meniscal tears.

TABLE 1 Grades of Recommendation

<table>
<thead>
<tr>
<th>Clinical Care Recommendation</th>
<th>Grade *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degenerative meniscal tears identified in patients with osteoarthritis should be treated nonoperatively.</td>
<td>A</td>
</tr>
<tr>
<td>Meniscal repair provides improved long-term outcomes, better clinical outcome scores, and less severe degenerative changes seen radiographically than does partial meniscectomy.</td>
<td>B</td>
</tr>
<tr>
<td>Inside-out and all-inside meniscal repair techniques demonstrate no difference in failure rates, functional outcome scores, or complications.</td>
<td>C</td>
</tr>
<tr>
<td>Biologic augmentation strategies improve the rate of meniscal healing.</td>
<td>C</td>
</tr>
<tr>
<td>Weight-bearing and terminal flexion should be limited following meniscal repair.</td>
<td>I</td>
</tr>
</tbody>
</table>

Grade A indicates good evidence (Level-I studies with consistent findings) for or against recommending intervention; Grade B, fair evidence (Level-II or III studies with consistent findings) for or against recommending intervention; Grade C, conflicting or poor-quality evidence (Level-IV or V studies with consistent findings) for or against recommending intervention; and Grade I, insufficient or conflicting evidence not allowing a recommendation for or against intervention.

Fig. 3

Schematic diagram demonstrating the collagen fiber ultrastructure and orientation within the meniscus: the superficial network (1), the lamellar layer (2), the central, main layer (3), radial interwoven fibers (arrowheads), and loose connective tissue (arrow). (Reproduced, with permission of Springer, from: Petersen W, Tillmann B. Collagenous fibril texture of the human knee joint menisci. Anat Embryol [Berl]. 1998 Apr;197[4]:317-24. © Springer-Verlag Berlin Heidelberg 1998.)
Nonoperative Treatment
The role of nonoperative management has been studied extensively for degenerative meniscal tears. Nonoperative treatment is a cost-effective means of obtaining equivalent functional outcomes at 1 year while avoiding the potential risks of surgery (Table I). However, the role of nonoperative management for simple tear patterns in younger patients is less clear. Over one-third of patients (mean age of 43 years) investigated for a meniscal tear had an asymptomatic tear on the contralateral side. Furthermore, >95% of small peripheral tears left in situ at the time of ACL reconstruction did not require further surgical intervention. Thus, it is clear that not all meniscal tears require surgical intervention. However, given the potential long-term sequelae of meniscal pathology, patients with symptomatic meniscal tears warrant a thorough assessment with surgical consultation.

Surgical Intervention
A healed meniscal repair results in improved long-term functional outcome scores when compared with partial meniscectomy. Furthermore, meniscal repair has been shown to be protective against the development and progression of arthritis, which correlates closely with declining functional outcomes. In order to maximize healing potential, we follow the “ABCs” of meniscal repair: anatomic reduction, biologic augmentation, and circumferential compression across the tear site. Considerable technologic advances have occurred over the past 2 decades. Open repairs have been largely replaced by arthroscopic techniques, which can generally be classified as “outside-in,” “inside-out,” or “all-inside” repairs. While the outside-in technique is a useful option for repairing the anterior horn or midbody of the meniscus, it is difficult to obtain a perpendicular trajectory in the posterior third, favoring either an inside-out or all-inside repair. The inside-out technique remains the gold-standard technique for meniscal repair and is especially useful for repair of large tears (>3 cm) or bucket-handle tears for which multiple sutures are required. In an effort to reduce the risk of neurologic injury and avoid the additional incision, all-inside techniques have evolved. The authors of a recent systematic review compared the clinical outcomes of inside-out and all-inside meniscal repair techniques and found equal healing rates, functional outcomes, and complications. Currently, both techniques are commonly utilized, with similar indications and results.

Tear-Specific Biomechanics, Repair Techniques, and Outcomes
Meniscal tears are typically classified on the basis of their orientation, such as vertical longitudinal, horizontal, radial, oblique, and complex. The biomechanical implications of each type of tear relate to the orientation of collagen-fiber disruption identified in the meniscal microstructure.

Vertical Longitudinal Tears
Biomechanics
Vertical longitudinal tears result from disruption of the superficial radial collagen fibers in line with the circumferential collagen fibers. Larger tears can allow the inner meniscus to flip on itself, a condition commonly referred to as a “bucket-handle” meniscal tear. When a vertical longitudinal tear is resected, a partial or complete meniscectomy can result, causing the contact pressures to nearly triple.

Repair Techniques and Outcomes
Acute, peripheral, vertical longitudinal tears demonstrate an exceptional capacity for healing. In 1 study, tears of <10 mm identified at the time of ACL reconstruction left in situ had a reoperation rate of 3.2% at an average of 6 years postoperatively, while in contrast, tears of >10 mm had a reoperation rate of 11.5%. These are traditionally repaired using an inside-out technique. Stacked vertical mattress sutures positioned every 3 to 5 mm provide biomechanical superiority over horizontal mattress configurations. Concerns for increased neurovascular injury, needle-stick injury, and surgical time have led to the development and implementation of all-inside repair techniques.
techniques. These techniques utilize anchor-based constructs with pretied slip knots (Fig. 4-B), or self-retrieving suture-passing devices followed by intra-articular knot tying (Fig. 4-C). Biomechanical testing has demonstrated similar loads to failure when compared with traditional inside-out meniscal repair. Clinically, no difference in failure rate, functional outcomes, or complications has been identified. The optimal repair technique should be determined on an individual basis by surgeon preference and familiarity.

Horizontal Tears

Biomechanics

Horizontal cleavage tears are unique in that the circumferential fibers remain intact from anterior to posterior meniscal roots (Fig. 3). Horizontal cleavage tears do not result in notable changes to the total contact surface area or contact pressures. However, single leaflet resection was found to significantly reduce the contact area (by 59%), resulting in peak contact pressures similar to those measured following dual leaflet resection. Repair of horizontal meniscal tears returns contact pressures to near-normal levels.

Repair Techniques and Outcomes

Since horizontal tears were once thought to have minimal healing capacity, either nonoperative strategies or meniscectomy were recommended. However, with increasing recognition of the long-term implications of meniscectomy, attempts have been made to preserve both leaflets during repair. Repair of a horizontal cleavage tear of the meniscus with circumferential compression stitches; see also Figure 5. Deteriorating outcomes have been demonstrated for meniscal repair with increasing age. In younger patients, horizontal cleavage tear repair can provide excellent outcomes with healing rates similar to those noted for other tear patterns. These tears should be differentiated from degenerative meniscal tears that occur in patients ≥50 years of age with associated arthritis. The authors of a recent systematic review of horizontal cleavage tear repair reported on 98 patients from 9 independent studies. The overall clinical healing rate was 78.6%. They concluded that the literature does not support the hypothesis that repair of horizontal cleavage tears has an unacceptably low rate of success. Biologic augmentation strategies may further improve healing rates.

Radial Tears

Biomechanics

Radial tears transect the circumferential collagen fibers of the central meniscus (Fig. 3). Radial meniscal tears of up to and including 60% of the central zone had no effect on pressure magnitude or location in both medial and lateral meniscal specimens, making them potential candidates for partial meniscectomy. However, tears involving 90% of the meniscus demonstrated significant increases in peak pressures. Meniscal repair decreases peak pressures to near-normal levels.

Repair Techniques and Outcomes

Radial tears can be repaired using inside-out, all-inside, or transtibial techniques. Video 2 demonstrates the repair of a radial tear of the meniscus; see also Figures 6-A, 6-B, and 6-C. Inside-out and anchor-based all-inside techniques generate tension against the periphery of the meniscus or capsule, creating horizontal mattress-suture configurations at the radial tear site. In contrast, all-inside sutures placed with self-retrieving suture-passing devices produce a vertical mattress-suture configuration that applies direct compression at the tear site.
site. The all-inside technique with a vertical-suture configuration demonstrated lower displacement, higher load to failure, and greater stiffness compared with the inside-out technique67. Chronic radial meniscal tears can introduce further complexity because of tear retraction. An anatomic transtibial meniscal repair technique encourages tear mobilization and crossed traction stitches through tibial tunnels (Fig. 6-C)65. This technique demonstrated significantly less gapping distance and significantly higher load to failure when compared with an inside-out technique65. Clinically, outcomes similar to those of vertical longitudinal meniscal tears repaired with an inside-out technique have been observed68. Biologic augmentation may enable healing of meniscal tears in the avascular zone69.

Repair Enhancement and Biologic Augmentation

Healing of the meniscus following repair is affected by its inherently poor vascularity and acellularity16. While meniscectomy results in fewer reoperations, a successful repair leads to improved long-term clinical and radiographic outcomes70. Biologic augmentation strategies attempt to promote chemotaxis, cellular proliferation, and/or matrix production at the site of meniscal repair to help overcome healing limitations8. Extensive research is currently under way at the clinical, in vitro, and in vivo levels to improve healing rates following meniscal repair71. Current clinical applications include mechanical stimulation, marrow venting procedures, the use of fibrin clots, platelet-rich plasma injections, and stem cell-based therapies.

Mechanical Stimulation

Abrasion of the adjacent synovium or trephination of the meniscus has been proposed as a means to improve the healing response71. Synovial rasping is thought to promote neovascularization, with documented increases in interleukin-1-alpha, proliferating cell nuclear antigen, transforming growth factor β_1, and platelet-derived growth factor in a rabbit model72. Trephination is the creation of a channel between a region of increased vascularity and an avascular region73,74. In a goat model, improved healing (even in the avascular zone) was demonstrated when trephination was added to meniscal repair73. Clinically, trephination of symptomatic incomplete meniscal tears has demonstrated >90% good to excellent outcomes.

Fig. 6
Radial meniscal tear repair techniques. **Fig. 6-A** Arthroscopic image following inside-out repair of a right radial medial meniscal tear with horizontal mattress sutures. **Fig. 6-B** Arthroscopic image following all-inside repair with knot tying of a right radial medial meniscal tear. **Fig. 6-C** Arthroscopic image following a transtibial repair with inside-out (IO) horizontal mattress sutures of a radial tear of the left lateral meniscus.

Fig. 7
Arthroscopic images demonstrating a marrow venting procedure. **Left panel** An awl is placed against the cortex within the femoral notch. **Center panel** The awl after mallet-assisted advancement through the outer cortex. **Right panel** Marrow elements being released after removal of the awl.
results75. The degree of mechanical stimulation achieved through trephination is balanced by the recognition that normal circumferential fibers are disrupted, which can affect the hoop-stress distribution properties of the meniscus.

Marrow Venting Procedures
Marrow venting procedures are performed in an attempt to replicate the biologic environment created by ACL tunnel drilling66 (Fig. 7). In a goat model, the addition of marrow venting significantly improved the rate of meniscal healing77. Dean et al. performed a Level-II comparative cohort study of patients who underwent an isolated meniscal tear repair with a marrow venting procedure (intercondylar notch) or meniscal repair in conjunction with an ACL reconstruction78. There was no significant difference in the rate of failed meniscal repair between the 2 cohorts at a minimum of 2 years follow-up.

Use of Fibrin Clot
Clinical studies have demonstrated the effectiveness of the use of a fibrin clot at the site of meniscal repair69,79,80. Jang et al. obtained a fibrin clot from autologous blood and implanted it using an inside-out suture technique79. A success rate of 95\% (39 of 41) was reported after second-look arthroscopy or MRI at a mean of 8.3 months. Similarly, Ra et al. performed an inside-out suture repair technique with the use of a fibrin clot and demonstrated that 11 of 12 patients had complete healing on postoperative clinical assessment80. To our knowledge, there has been no comparative study showing the superiority of adding fibrin clot use to meniscal repair.

Platelet-Rich Plasma Injections
Platelet-rich plasma is currently being used for many indications, including lateral epicondylitis81, partial-thickness rotator cuff tears82, and Achilles tendon ruptures83. However, we are aware of only 2 trials (Level III) that have assessed the effectiveness of platelet-rich plasma injections for meniscal pathology84,85. Both studies found no difference in reoperation rate between meniscal repairs performed in isolation and those that received treatment with platelet-rich plasma. However, Pujol et al.86 reported improved pain and functional scores at a minimum of 24 months in the cohort in which platelet-rich plasma was introduced into the lesion following meniscal repair. As a future option of biologic therapy, the feasibility of introducing growth factors to enhance meniscal repair has been tested in animal studies86-88. While promising data have been provided by these studies, the role of platelet-rich plasma as an adjuvant in meniscal repair in humans needs further investigation.

Stem Cell-Based Therapy
Preclinical porcine studies demonstrated that implantation of mesenchymal stem cell (MSC)-based tissue-engineered constructs or repetitive intra-articular injection of MSCs improves the quality of meniscal repair while protecting articular cartilage from degenerative change89,90, suggesting the feasibility of MSC-based therapy in meniscal repair. Vangsness et al. assessed the safety and response of the knee to MSC injections following partial meniscectomy91. Volumetric assessment of the meniscus revealed that 25\% of the patients had a significant increase in meniscal volume (defined threshold of >15\%). The authors concluded that treatment with MSCs demonstrated evidence of meniscal regeneration and supported its use for future meniscal research. Piontek et al. subsequently treated a consecutive series of meniscal tears involving the avascular zone with all-inside suture repair, wrapping with a collagen membrane, and bone marrow blood injection92. At 2 years of follow-up, 86.8\% of the patients demonstrated clinical improvement and 76\% had nonhomogeneous MRI signal with no evidence of a meniscal tear. While these results are promising, further investigation is needed to determine the role of stem cell therapy in treating meniscal repairs.

Biomaterial Augmentation
Henning et al. demonstrated that the use of a fascia sheath to cover the repaired area improved healing rates of complex meniscal tears, including double-flap, double-longitudinal, and radial tears, with the exception of tears in the middle third of the lateral meniscus93. The potential use of a nanofibrous, woven biomaterial-based membrane for meniscal repair has been investigated94, with promising results. With the confirmation of safety and efficacy, such biologic membranes could increase the opportunities to treat complex meniscal tears, without the risk of donor-site morbidity or disease transmission.

TABLE II Standardized Meniscal Repair Rehabilitation Protocol for All Meniscal Tear Repairs

<table>
<thead>
<tr>
<th>Time (wk)</th>
<th>Knee Immobilizer</th>
<th>Weight-Bearing</th>
<th>Active/Passive Range of Motion</th>
<th>Loaded Range of Motion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>During ambulation</td>
<td>Toe-touch*</td>
<td>0°-90°</td>
<td>0°</td>
</tr>
<tr>
<td>>4-6</td>
<td>No</td>
<td>Partial*</td>
<td>0°-90°</td>
<td>0°-90°</td>
</tr>
<tr>
<td>>6-8</td>
<td>No</td>
<td>Full</td>
<td>0°-90°</td>
<td>0°-90°</td>
</tr>
<tr>
<td>>8-16</td>
<td>No</td>
<td>Full</td>
<td>No restrictions</td>
<td>0°-90°</td>
</tr>
<tr>
<td>>16</td>
<td>No</td>
<td>Full</td>
<td>No restrictions</td>
<td>No restrictions</td>
</tr>
</tbody>
</table>

If a concomitant ACL reconstruction was performed, immediate full weight-bearing is allowed for vertical longitudinal and horizontal tear patterns. If an isolated repair for a vertical longitudinal or horizontal tear pattern was performed, then partial weight-bearing is allowed immediately.
Rehabilitation
A variety of rehabilitation protocols have been advocated, with no current consensus regarding weight-bearing status, range-of-motion restrictions, bracing, or the rate of progression through each stage of the protocol. Biomechanical testing has demonstrated that meniscus-tear patterns react differently under physiologic loads. Vertical longitudinal tears are reduced and compressed during weight-bearing in extension through the redistribution of hoop stresses. In contrast, radial tear patterns are exposed to distraction forces at the repair site during loading, which may compromise healing. Similarly, terminal flexion increases the compressive stresses on the meniscus. While accelerated rehabilitation protocols (allowing early weight-bearing and unrestricted range of motion) have demonstrated results equivalent to restricted protocols for vertical longitudinal tears, to our knowledge, there is currently no evidence for their use for horizontal or radial tear patterns. Given the absence of the superiority of using an accelerated protocol, the frequency of combined tear pattern injuries, the implications of a failed repair, and to prevent misinterpretation among therapists, a standardized protocol designed to protect all meniscal repairs throughout healing should be considered (Table II).

The Failed Meniscal Repair
The reported rate of failed meniscal repair ranges from 0% to 43.5%, with a mean of 15%. The reported rate of failed meniscal repair ranges from 0% to 43.5%, with a mean of 15%. Failure is commonly defined as meniscectomy following meniscal repair. While the volume of meniscus resected at revision is rarely increased when compared with the initial lesion, the effects of repeat surgery, prolonged immobilization, muscle atrophy, and associated costs to the individual, employer, and health-care system are important considerations.

In carefully selected patients, revision meniscal repair can provide good results. Krych et al. evaluated 34 patients following revision meniscal repair and demonstrated that 79% of the patients remained pain-free with no mechanical symptoms or further surgery at 72 months. Degenerative changes at the time of repair have been identified as a potential risk factor for failure. Prospective analysis of this patient population is needed to better define which patients should undergo a revision meniscal repair. Irreparable tears should undergo partial meniscectomy, preserving as much meniscus as possible.

Meniscal Deficiency
Patients who develop pain in the involved compartment in the absence of arthritis, malalignment, or ligamentous instability warrant consideration for meniscal allograft transplantation. Collagen meniscal implants and synthetic-based meniscal scaffolds have also demonstrated improved functional outcomes when implanted in patients with focal meniscal deficiency.

Conclusions
Meniscal repair provides improved long-term outcomes, better clinical outcome scores, and less severe degenerative changes seen radiographically compared with partial meniscectomy. Advancements in surgical techniques have expanded the capability for meniscal repair, while the implementation of biologic augmentation appears to improve healing rates. However, clinical data remain sparse, and prospective randomized trials are needed. It is critical that surgeons treating meniscal tears be familiar with the evolving repair techniques to optimize the health and longevity of the knee joint.

References

Jarret M. Woodmass, MD, FRCS(C)1
Robert F. LaPrade, MD, PhD2
Nicholas A. Sgaglione, MD3
Norimasa Nakamura, MD, PhD4
Aaron J. Krych, MD1
1Department of Orthopedic Surgery and Sports Medicine, Mayo Clinic, Rochester, Minnesota
2The Steadman Clinic, Steadman Philippon Research Institute, Vail, Colorado
3Department of Orthopedics, Northwell Health System, Great Neck, New York
4Institute for Medical Science in Sports, Osaka Health Science University, Osaka, Japan
ORCID iD for A.J. Krych: 0000-0003-3248-8007

