ABSTRACT

Disorders of the deep infrapatellar bursa are important to include in the differential diagnosis of anterior knee pain. Knowledge regarding its anatomic location can aid the clinician in establishing a proper diagnosis. Fifty cadaveric knees were dissected, and the deep infrapatellar bursa had a consistent anatomic location in all specimens. The deep infrapatellar bursa was located directly posterior to the distal 38% of the patellar tendon, just proximal to its insertion on the tibial tubercle. There was no communication to the knee joint. Its average width at the most proximal margin of the tibial tubercle was slightly wider than the average distal width of the patellar tendon. It was found to be partially compartmentalized, with a fat pad apron extending down from the retropatellar fat pad to partially divide it into anterior and posterior compartments. The recommended approach to this bursa, either for aspiration, injection, or surgery, is along the lateral edge of the patellar tendon just proximal to the tibial tubercle.

MATERIALS AND METHODS

Thorough dissections of the anterior aspect of the knee of 50 nonpaired cadaveric knees were performed. There were 27 male and 23 female cadaveric knees with 25 right and 25 left knees. The average age of the specimens was 71.8 years (range, 42 to 93). After the skin and subcutaneous tissues of the anterior aspect of the knee were carefully dissected away, an approach to the deep infrapatellar bursa of the knee was made through medial and lateral arthrotomy incisions along the patella, followed by transection of the quadriceps tendon from the patella. The patella and patellar tendon were then retracted distally and the retropatellar fat pad was dissected away meticulously until the edges of the deep infrapatellar bursa were identified. An incision was made to allow for a complete retraction of the patellar tendon-patella complex starting along the proximal margins of the bursa and continuing distally along its medial and lateral margins.

At this point, whether the bursa was more easily identified from the lateral or medial border or equally the same from both borders was recorded. The dimensions of the deep infrapatellar bursa were then readily identified (Table 1). After all the measurements were completed, a sagittal incision was made through the retropatellar fat pad at its midportion on the bursa to identify the most distal anterior intraarticular portion of the tibia, and the distance from the bursa to the joint was recorded. Whether the bursa had an intraarticular communication with the knee joint was also recorded. Because of the nature of the dissection approach, the exact depth in the anterior to posterior plane could not be accurately measured, so it was not recorded.

RESULTS

A deep infrapatellar bursa was identified in all specimens. In 34 knees (68%), the deep infrapatellar bursa was more readily identified at its lateral border, and in 8 knees
The bursa was more readily identified from the medial border. In the remaining eight knees (16%), the deep infrapatellar bursa was equally identifiable from either the lateral or medial border during the dissection approach.

In all specimens, the deep infrapatellar bursa was located directly posterior to the patellar tendon, just proximal to its insertion on the tibial tubercle (Fig. 1). The bursa was found to be slightly wider than the width of the patellar tendon at its insertion site on the tibial tubercle (Table 1). Two portions of the bursa were found in all specimens. The deeper portion (posterior compartment) of the bursa formed a trapezoidal, almost rectangular, shape against the anterior portion of the proximal tibia and was located between the proximal margin of the tibial tubercle and the distal attachment of the retropatellar fat pad onto the proximal tibia. The wider base of the trapezoid was on the lateral side, and the narrower base was on the medial side. Anterior to this more posterior compartment of the bursa was an apron-like projection of fat from the retropatellar fat pad onto the proximal tibia. The wider base of the trapezoid was on the lateral side, and the narrower base was on the medial side. Anterior to this more posterior compartment of the bursa was an apron-like projection of fat from the retropatellar fat pad onto the proximal tibia. The wider base of the trapezoid was on the lateral side, and the narrower base was on the medial side. Anterior to this more posterior compartment of the bursa was an apron-like projection of fat from the retropatellar fat pad onto the proximal tibia. The wider base of the trapezoid was on the lateral side, and the narrower base was on the medial side. Anterior to this more posterior compartment of the bursa was an apron-like projection of fat from the retropatellar fat pad onto the proximal tibia.

The average dimensions of the deep infrapatellar bursa are included in Table 1. No communication to the knee joint was found via dissections in any of the 50 knees. The deep infrapatellar bursa was found to be posterior to the distal 38% of the patellar tendon.

**TABLE 1**

Dimensions of the Deep Infrapatellar Bursa (IPB) and Related Anatomic Structures of the Knee

<table>
<thead>
<tr>
<th>Variable</th>
<th>Length (mm) ± 1 SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Posterior compartment of deep IPB</td>
<td></td>
</tr>
<tr>
<td>Medial edge</td>
<td>13.6 ± 3.4</td>
</tr>
<tr>
<td>Midportion</td>
<td>13.4 ± 3.2</td>
</tr>
<tr>
<td>Lateral edge</td>
<td>16.4 ± 4.0</td>
</tr>
<tr>
<td>Distance from superior aspect of posterior compartment of deep IPB to knee joint</td>
<td>18.4 ± 3.2</td>
</tr>
<tr>
<td>Length of fat pad apron over the posterior compartment of the deep IPB</td>
<td>9.7 ± 3.0</td>
</tr>
<tr>
<td>Anterior compartment of the IPB—midportion</td>
<td>18.9 ± 5.7</td>
</tr>
<tr>
<td>Patellar tendon (middle)</td>
<td>48.6 ± 5.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Width (mm) ± 1 SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep IPB at tibial tubercle</td>
<td>30.0 ± 2.4</td>
</tr>
<tr>
<td>Deep IPB 5 mm proximal to tibial tubercle</td>
<td>30.5 ± 2.8</td>
</tr>
<tr>
<td>Deep IPB 10 mm proximal to tibial tubercle</td>
<td>31.0 ± 3.0</td>
</tr>
<tr>
<td>Most proximal aspect of deep IPB—anterior compartment</td>
<td>29.2 ± 6.5</td>
</tr>
<tr>
<td>Patellar tendon at insertion on tibial tubercle</td>
<td>26.1 ± 2.8</td>
</tr>
</tbody>
</table>

Figure 1. Photograph (A) and illustration (B) of the deep infrapatellar bursa of the knee (patellar tendon is retracted, lateral aspect right knee).

**DISCUSSION**

Although disorders of the deep infrapatellar bursa of the knee have been described as a source of anterior knee pain and other knee pathologic abnormalities, there are no precise anatomic descriptions or descriptions of surgical approaches in the English literature. Likewise, the prev-
access to the entire portion of the deep infrapatellar bursa. This incision, one can retract the patellar tendon to gain proximal to its insertion on the tibial tubercle. Through incision along the lateral edge of the patellar tendon, just proximal to the tibial tubercle. Thus, this approach will allow the clinician to differentiate pain localized to this bursa from other sources of anterior knee pain.

ualence of this bursa and whether it communicates with the knee joint have not been documented.

In this series of dissections, the deep infrapatellar bursa of the knee was present in all specimens. It did not communicate with the knee joint in any specimen. Also, the bursa was partially compartmentalized, with a portion of the retropatellar fat pad extending down like an apron and dividing it into anterior and posterior compartments. This compartmentalization has not been described previously.

Understanding the anatomic location of the deep infrapatellar bursa should aid the clinician in the differential diagnosis of anterior knee pain. The location of the deep infrapatellar bursa can be consistently found by palpation of the distal 1 to 2 cm of the patellar tendon, just proximal to its insertion on the tibial tubercle. This is best accomplished with the knee in full extension and with the quadriceps mechanism relaxed. It is more readily identified in most knees on the lateral side of the patellar tendon, just proximal to the tibial tubercle. Thus, this location is recommended for aspiration, injection, or surgical approach for an inflammatory bursitis, septic bursitis, or other pathologic changes known to be associated with bursas.2,4,8,9,11,15

Based on the observations reported here, the recommended surgical approach to the deep infrapatellar bursa, if necessary, is through an approximately 2.5-cm sagittal incision along the lateral edge of the patellar tendon, just proximal to its insertion on the tibial tubercle. Through this incision, one can retract the patellar tendon to gain access to the entire portion of the deep infrapatellar bursa.

The clinical significance of disorders of the deep infrapatellar bursa as a source of anterior knee pain has been documented.5,7–17 Routine palpation of the deep infrapatellar bursa should be included during the clinical examination of the knee. The author has found this bursa to be an occasional source of inflammatory bursitis in patients with anterior knee pain. Diagnostic lidocaine injections of this bursa can be used to confirm isolated inflammation; however, in my experience, it has rarely been found to be the sole anatomic source for a patient’s chief complaint.

Fulkerson and Hungerford6 have reported that inflammatory bursitis of this structure can provoke symptoms similar to patellofemoral arthralgia. Inflammation and pain associated with the deep infrapatellar bursa have also been identified in patients with Osgood-Schlatter disease.12,14 In one study of patients with Osgood-Schlatter disease, a distended deep infrapatellar bursa was seen on magnetic resonance imaging in 71% (12 of 17) of cases.14 Injection of this bursa with lidocaine or a combination of lidocaine and corticosteroids has been reported to result in clinical relief of symptoms in the majority of patients.12,14 These studies did not mention the technique used to inject the deep infrapatellar bursa in these patients.

This deep infrapatellar bursa has also been implicated as a source of anterior knee pain in patients after patellectomy.6 Scarring of the deep infrapatellar bursa has also been implicated in the infrapatellar contraction syndrome.9 Knowledge of the dimensions of this bursa should aid the surgeon in planning a surgical release when clinically indicated.

The deep infrapatellar bursa was present in all knees in this series. Knowing the anatomic location of the deep infrapatellar bursa will allow the clinician to differentiate pain localized to this bursa from other sources of anterior knee pain.

ACKNOWLEDGMENTS

The author acknowledges the assistance of Fred Wentorf, MS, and Jeff Heinemann, MD, for assistance in dissections and data collection.

REFERENCES